CHRISTIAN SOCIAL SERVICES COMMISSION (CSSC)

NORTHEN ZONE JIONT EXAMINATIONS SYNDICATE (NZ-JES)

FORM FOUR PRE-NATIONAL EXAMINATION 2024

ENGINEERING SCIENCE

MARKING SCHEME

1.

i	Ii	iii	iv	v	vi	vii	viii	ix	Х
D	В	E	А	В	С	А	В	А	А

10 marks @ 01

2

LIST A	Ι	ii	iii	iv	V	vi
LIST B	G	Ι	F	E	K	D

06marks @01 mark

SECTION B

3. Data given

R = 10m

Angle = 45° 01mark

 $H_{max} = ?$

 $R/H_{max} = 4/Tan angle 01mark$

 $10m/H_{max} = 4/Tan 45^{\circ}$

 $10m/H_{max}=4/1$

 $H_{max}\ = 10m/4$

 $H_{max} = 2.5m$ 01 mark

 $Rx = F2\cos 0^{\circ} + F3\cos 30^{\circ} + F4\cos 45^{\circ} + F5\cos 30^{\circ}$

Rx = -10N + -5.2N + 3.54N + 2.6N

Rx = -9.06N 01mark

 $Ry = F1\sin 90^{\circ} + F3\sin 30^{\circ} + F4\sin 45^{\circ} + F5\sin 30^{\circ}$

Ry = 8N - 3N - 3.54N + 1.5N

Ry= 2.96N 01mark

Resultant (P) = $\sqrt{Rx^2 + Ry^2}$

 $P = \sqrt{-9.06^2 + 2.96^2}$

 $P = \sqrt{82.1 + 8.76}$

 $P = \sqrt{90.86}$

P= 9.53N. 02 marks

Direction of resultant (P)

Angle =
$$\tan^{-1}(Ry/Rx)$$

Angle = $\tan^{-1}(2.96/-9.06)$

Angle= $\tan^{-1}(-0.327)$

Angle=18°. 01 mark!

4.(a) When the efficiency of machine is 100%, this means that the total work done by the machine is equal to the total workput by the machine or mechanical advantage is equal to the velocity ratio. 02mark

Data given L = 2.6 mV.R = 8Efficiency = 68%01mark L = 80N.Ed = ?E=?From; V.R = Ed/LeBut L = Ed + Ld. ¹/₂mark 2.6 = Ed + LdEd = 2.6 - Ld¹/₂mark 8 = 2.6 - Ld/Ld8Ld = 2.6-Ld8Ld+Ld = 2.69Ld = 2.6 Divide by 9 both sides Ld = 0.29m02 mark Distance moved by effort is 2.31m Efficiency = $M.A/V.R \times 100\%$. 01mark $68\% = M.A/8 \times 100\%$ M.A = 5.44From M.A = L/E5.44 =80/E E = 14.7N.02 mark

(b)

(ii)

5.(a) The space is left to allow the iron girder to expand during the hot weather there by preventing damage to the bridge. 02 mark

(b)
$$T_1=20^{\circ}C$$

 $L_o=9.32mm$
 $L=9.36mm$
Cofficient of linear expansion (&) = 0.000017/^{\circ}C. 01 mark
 $T_2=?$
& = L - L_o/L_o× rise in temp
Rise in temp = L₁ - L_o/&× Lol. 01 mark
= 9.36 - 9.32/0.000017×9.32
=253.2°C. 03 marks
But rise in temp=T₂-T₁
 T_2 = Rise in temp+T₁
 T_2 = 253.2 + 28
 T_2 = 281.2°C. 02marks

6.(i) During the day there is high temperature which cause the increase in length of vibrating body , results the decrease in frequency. 01mark

(ii) Each music instrument is designed to produce a specific note ,the note

produced by violin which is string instrument is different with the note

produced by flute which is wind instrument. 01 mark

(b). Data given

L =
$$40$$
cm = 0.4 m
m = 2×10^{-3} Kg
T = 100 N
f₁ = ? 01 mark
f₂ =?

$f_n = nv/2L.$	01 mark
But V= $\sqrt{T/M}$	
M = m/L	
M = 0.002/0.4	
M = 0.005 Kg/m	02mark
$V = \sqrt{100/0.005}$	
V =√ 20000	
V = 141.42 m/s.	01 mark
$f_1 = 1 \times 141.42/2 \times$	0.4
$f_1 \!=\! 141.42/0.8$	
$f_1 = 176.8 \text{ Hz}$	01 mark
$f_2 = 2 \times 141.42/2 \times 0$.4
$f_2 = 282.84/0.8.$	01 mark
f ₂ =353.55 Hz	
7.(a) Data given	
Torque = 150Nn	1
$w_o = 0 \text{ rev/min}$	
$w_1 = 250 rev/min$	01 mark
t = 15s	
From	
(i) $w = 2\pi \times 250/6$	0s
w = 1570.8rad/6	0s
w = 26.2rad/s	01 mark
(ii) $w = w_o + at$	
26.2 = 0 + 15a	l

$a = 1.7 \text{ rad/sec}^2$	01 mark
(b) Data given	
m = 500g = 0.5 Kg	
$T_1 = -15^{\circ}C$	
$T_2 = 100^{\circ}C$	
$H_t = ?$	
$C_i = 2100 J/KgK.$	01 mark
$C_w = 4200 J/KgK$	
$L_i = 33,600 J/Kg$	
$L_s = 2,260,000 J/Kg$	

Heat required to raise temperature of steam from -15°C to 0°C

$$H_1 = 0.5 \times 2100 \times 15$$

 $H_1 = 15,750J$ 01mark

Heat required to convert ice into water

$$H_2 = m_i \times L_i$$

$$H_2 = 0.5 \times 33,600$$

H₂= 16,800J. 01mark

Heat required to raise temperature of water from 0°C to 100°C

$$H_3 = 0.5 \times 4200 \times 100$$

$$H_3 = 210,000J.$$
 01mark

Heat required to convert water into steam

 $H_4 = m_s \times L_v$

 $H_4=0.5 \times 2260000$

H₄=1,130,000J 01mark

Totat Heat,=H₁+H₂+H₃+H₄

Ht = 1,570J + 16,800J + 210,000J + 1,130,000J

Ht =1,372,550J 01mark

8 (a) The output voltage is d.c and is always positive in value 01 mark

03 marks

(b) Data given

9.(a)

L = 120cm = 1.2mn = 40 oscillations t = 88s.01 mark g=? From T = $2\pi\sqrt{L/g}$ $T^2 = (2\pi\sqrt{L/g})^2$ $T^2 = 4\pi^2 L/g$ $g = 4\pi^{2}L/T^{2}$. 02 mark But T = t/nT = 88/40T = 2.2s $g = 4 \times (3.14)^2 \times 1.2/2.2^2$ $g = 47.33 m/4.84 s^2$ $g = 9.8 \text{m/s}^2$. 02 mark SECTION C

Take X be a fulcrum

Mclockwise = M anticlockwise. 01 mark

 $9Kg \times 200cm = Y \times 300cm$

1800Kgcm = 300cmY ,Divide by 300 cm both side

Y = 6Kg ,but 1Kg = 10N

Y = 60N. 02 marks

From Upward forces = Downward forces

X + Y = 90N

- X + 60N = 90N
- X = 90N 60N
- X = 30N 02marks

The tensions of the wires are 60N and 30 N.

- (b) Data given
 - V = 240Vm = 150 Kg T₁ =20°C T₂ =40°C R = 25 Ohms 02 marks C_w = 4200J/Kg°C t = ?

Electrical energy = Heat energy

I t v = m c_w T 01 mark But I = V/R $V^2t/R = m c_w T$ $240^2t/25 = 150 \times 4200 \times 20$ 01 mark 2304t = 12,600,000 divide by 2304 both sides t = 5,468.75 Seconds. 02 marks (ii) P = IV But I = V/R P = V^2/R 01 mark P = 240²/25 P = 57,600/25 P = 2304 Watts 02 marks

 $10\left(a\right)\left(i\right)$ - it produce small and erect image

- it has a wide field of view. 02 marks

(ii)

(b) Data given

f = +20cm

 $h_i = 3h_o$

u = ? 02 marks

v = ?

 $M=h_i/h_o=v/u \qquad 01 \ mark$

$3h_o/h_o = v/u$	
v = 3u	02 marks

Then, 1/f = 1/u + 1/v 01 mark 1/20 = 1/u + 1/3u 1/20 = 3 + 1/3u 3u = 80 divide by 3 both sides u = 26.67 cm. 02 marks The object distance is 26.67 cm (ii) from v = 3u $v = 3 \times 26.67$ cm

v = 80 cm. 02 marks

The image distance is 80 cm

11.(a) Data given

V = 2 V	
R_g =300 Ohms. 01 mark	
l = ?	
I = V/R.	
I=2/300	
I = 0.0067A. 02 marks	
But $V_m = 15 V$	
From $R_m = V_m - IR_g / I$. $0\frac{1}{2}m$	ark
$R_m = 15 - 0.0067 \times 300/0.0$	067
$R_{m.} = 12.99/0.0067$	

		$R_m = 1938.8 \text{ Ohms.} \qquad 01^{1/21}$	narks
(ii)		$R_s = IgRg / Im $ 0 ¹ /2marks	
		$Rs = 0.0067 \times 300/0.2$	
		$Rs = 10.05 \text{ Ohms.}$ $01\frac{1}{2}$	marks
(b)		Data given	
		Efficiency = 80%	
		$V_p = 24 V$	
		$V_s = 240 V$	
		N _p =100 turns	
		$I_p = 3A.$ 01 mark	
		$N_s = ?$	
		$I_p = ?$	
	(i)	Np/Ns = Vp/Na	
		100/Ns = 24/240 by crossing	g multipl
		24Ns/24 = 24,000/24	
		Ns = 1000 turns. 02	marks
		Number of turns in secondar	y coil is
	(ii)) Efficiency = $Ps/Pp \times 100\%$.	0½m
		But $Pp = IpVp$	
		$Pp = 3 \times 24$	

lication

1000 turns

- ark
 - Pp = 72 Watts. 01¹/₂ marks $80\% = Ps/72 \times 100\%$ By crossing multiplication 100%Ps = 5760%. Divide by 100% both sides Ps = 57.6 W.01 mark But Ps = IsVs

Is = Ps/VsIs = 57.6/240Is = 0.24 A. 02 marks

The current in secondary coil is 0.24 A